Bone Segmentation in CT-Liver images using K-Means Clustering for 3D Rib Cage Surface-Modeling
نویسندگان
چکیده
A 3D rib cage model helps to study anatomical structures in some medical applications such as biomechanical and surgical operations. Its quality directly depends on rib cage segmentation if it is reconstructed from image data. This paper presents an optional segmentation method based on K-means clustering. It uses a hierarchical concept to control the clustering, and it organizes clustered regions in subsequent indexes of background, soft-tissue, and hard-tissue regions. We applied the proposed method to 3D CT-liver images acquired by a 4D-CT imaging system. The proposed method was compared with 2D K-means (KM) and 2D fuzzy C-means (FCM) clustering. From our experiment, the proposed method gave more stable clustering results under a condition of randomization in initial cluster-centers, and it performed faster than 1.5 times of 2D-KM and 7.7 times of 2D-FCM on average. For 3D surface models, the results of the proposed method provided more information of bone regions in vertebra, ribs, and scapula areas than results of 2D-KM and 2D-FCM. Key–Words: 2D K-mean clustering, 2D fuzzy C-mean clustering, and rib cage segmentation
منابع مشابه
Extraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images
Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...
متن کاملA Discussion on the Evaluation of A New Automatic Liver Volume Segmentation Method for Specified CT Image Datasets
This paper presents discussions on experimental result evaluation outcomes of a new liver volume segmentation method developed for 10 specified CT image datasets. Precise liver surface segmentation is the first step and one of the major tasks in individual surgical resection virtual reality simulations. There are five major difficulties: Firstly, the automatic initialization of liver detection ...
متن کاملDetection of lung cancer using CT images based on novel PSO clustering
Lung cancer is one of the most dangerous diseases that cause a large number of deaths. Early detection and analysis can be very helpful for successful treatment. Image segmentation plays a key role in the early detection and diagnosis of lung cancer. K-means algorithm and classic PSO clustering are the most common methods for segmentation that have poor outputs. In t...
متن کاملAutomated Model-Based Rib Cage Segmentation and Labeling in CT Images
We present a new model-based approach for an automated labeling and segmentation of the rib cage in chest CT scans. A mean rib cage model including a complete vertebral column is created out of 29 data sets. We developed a ray search based procedure for rib cage detection and initial model pose. After positioning the model, it was adapted to 18 unseen CT data. In 16 out of 18 data sets, detecti...
متن کاملSegmentation of Liver in Low-Contrast Images Using K-Means Clustering and Geodesic Active Contour Algorithms
In this paper, we present an algorithm to segment the liver in low-contrast CT images. As the first step of our algorithm, we define a search range for the liver boundary. Then, the EM algorithm is utilized to estimate parameters of a ‘Gaussian Mixture’ model that conforms to the intensity distribution of the liver. Using the statistical parameters of the intensity distribution, we introduce a ...
متن کامل